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Improved Vector FEM
Solutions of Maxwell’s
Equations using Grid Pre-
conditioning

Daniel Whitel & Garry Rodriguel

Abstract The ‘Eme Domain Vector Finite Element Method is a promising new
approach for solving Maxwell’s equations on unstructured triangular grids. This method
is sensitive to the quality, or condition, of the grid. In this study grid pre-conditioning
techniques, such as edge swapping, Laplacian smoothing, and energy minimization, are
shown to improve the accuracy of the solution and also reduce the overall computa-
tional effort.

Keywords: Maxwell’s Equations, wave equation, finite element, veetor finite element,
Whitney element, grid relaxation.

1.0 INTRODUCTION

Maxwell’s equations are a coupled set of linear partial differential equations (PDE’s)
that describe the time evolution of classical electromagnetic fields. Typically it is
desired to solve Maxwell’s equations in an inhomogeneous volume consisting of several
dielectric, magnetic, and metallic regions. Electromagnetic design and analysis prob-
lems can roughly be categorized into static problems and dynamic problems. Dynamic
problems can again be roughly categorized into those that are best solved in the fre-

1. Department of Applied Science, Univemity of Crdifomia
at Davis and Lawrence LNermore Nationat Laboratory,
P.O. Box 808, L-416, Livermore, California 94551
(white37@llnl.gov, rodrigue@llnl.gov). This research
wassupportedunder the auspicesof the UnitedStates
Departmentof Energyby LawrenceLivermoreNational
LaboratorycontractW-7405-Eng-48.

1



quency domain, and those that are best solved directly in the time domain. This study
focuses on solution of Maxwell’s equations directly in the time domain.

The most popular approach for such problems is the Finite Difference Time Domain
method [ 1 ]-[ 4 ]. Usually this method is implemented using dual Cartesian grids, with
the electric field components known on the primary grid and the magnetic field compo-
nents known on the dual grid, with the curl operator approximated by the 2nd order cen-
tral difference formula. The electric field is updated at even time steps, the magnetic
field at odd time steps, by 2nd order central difference in time (leapfrog). An alternative
method combines the two curl operators and solves the wave equation for either the
electric or magnetic field on a single grid. Both approaches yield a conditionally stable
and consistent method for solving Maxwell’s equations in the time domain. The disad-
vantage of these finite difference methods is that they are only defined for Cartesian
grids, and it has been shown that approximating curved boundaries by a “stair step”
approximation can give poor results [ 4 ][ 5 ]. Nevertheless the FDTD is extremely effi-
cient and it is often used as a benchmark to which new methods are compared.

Whereas FDTD methods are defined on Cartesian grids, Finite Element Methods (FEM)
are designed to solve partial differential equations on unstructured grids. ~ically
curved boundaries are approximated as piecewise linear, and an unstructured mesh is
used within each region. The classic FEM using nodal elements has been quite success-
ful in solving static electromagnetic problems where the continuous electrostatic poten-
tial can be employed, [ 6 ]-[ 8]. Historically the use of nodal finite elements has been
less successful for solving for the electric and/or magnetic fields directly. The use of
nodal elements for solving frequency domain Maxwell’s equations can lead to spurious
modes [ 9 ][ 10], or numerical solutions that do not satisfy the divergence properties of
the fields. Inclusion of divergence conditions into the variational problem can reduce
these spurious modes, this is an area of current research [ 11 ]. Time domain finite ele-
ment methods [ 12] [ 13 ] may have similar difficulties with spurious modes. If the
divergence conditions are neglected, then the divergence of the fields may grow with
time, even if the source terms are divergence free. In this case the method does not con-
serve charge, and is not “divergence preserving”. In addition nodal finite element meth-
ods are not appropriate for inhomogeneous volumes because the electric and magnetic
fields are not continuous across a material interface, and it is difficult to correctly model
this discontinuity using nodal elements.

Recently developed vector elements, also known as edge elements, Whitney l-forms, or
H(curl) elements [ 14 ]-[ 18], have been used to solve Maxwell’s equations for the elec-
tric and/or magnetic fields directly. These elements have degrees of freedom along the
edges of the grid. Since there are in general more edges than nodes, the use of vector
finite elements is slightly more expensive than nodal elements for the same grid. How-
ever the use of these elements eliminates spurious modes. These elements enforce tan-
gential continuity of the fields but rdlow for jump discontinuity in the normal
component of the fields, which is a requirement for accurate modeling of fields in inho-
mogeneous volumes. Vector finite element methods have been successfully used in the
frequency domain to analyze resonant cavities, compute waveguide modes, and perform
scattering calculations, [ 19 ]-[ 21 ].
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2.0

2.1

The Time Domain Vector Finite Element Method (TDVFEM), which is derived in Sec-
tion 2.0, uses vector finite elements as basis fimctions in a Galerkin approximation of
the vector wave equation. The leapfrog method is used to advance the fields in time.
This approach is similar to that developed in [22 ]. It is reasonable to assume that the
grid will have some effect on the accuracy of the solution, due to numerical dispersion
of the method. l%e TDVFEM requires that a sparse linear system be solved at every
time step. Naturally iterative or approximate methods will be used to solve this system.
The computation effort required will depend upon how well conditioned the linear sys-
tem is, and it is reasonable to assume that this also will depend upon the grid. In this
paper a good, or well conditioned, grid will be defined in terms of both numerical dis-
persion and computational effort required to solve the linear system. The efficacy of
pre-conditioning the grid will be examined both analytically and computationally. This
study will be limited to two dimensional grids.

The Time Domain Vector Finite Element method

Vactor Wave Equation

In two dimensions solutions to Maxwell’s equations can be decomposed into transverse

electric (TE) fields with the electric field in the x, y plane and the magnetic field aligned

in the z direction, and transverse magnetic fields with the magnetic field in the X,Y

plane and the electric field aligned in the z direction. Both TE and TM fields can be

analyzed using the TDVFEM, the only difference between the two is the boundary con-
dition. This study was limited to TE fields for simplicity. In this case the two-dimen-
sional Maxwell’s equations Eq. (1)-Eq. (3) consist of two equations that relate the

vector electric field ~ = [El, E2] and the scalar magnetic field H and a divergence

condition.

V)(E=$ (1)

(2)

where

“xH=[z,-El’*v~=%? (4)

For simplicity it is assumed there is no current density in the region of interest. llvo
constitutive relations are required to close Maxwell’s equations. For this study the
dielectric permittivity E, the magnetic permeability w will be considered simple scrdar
functions of position,
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2.2

The magnetic field is eliminated by applying the operation? x to Eq. (1) and applying

the identities in Eq. (2) and Eq. (5), we obtain the vector wave equation for the electric
field

(6)

Vector Finite Eiements

The Galerkin procedure will be used to solve Eq. (6) on a two-dimensional triangular
grid using linear vector finite elements. More precisely, consider an arbitrary triangle

with nodes numbered 1,2, 3 in a counter clockwise fashion, and let edge [i, j] be the

edge connecting nodes i and j = (i+ 1) mod3. If Ni is the linear nodal basis fimction

associated with node i, then the linear vector finite elements are defined as

@i = (NiVNj-NjVNi) j = (i+ l)mod3 i = 1,2,3. (7)

Using the linearity and piecewise smoothness of the nodal basis functions Ni we readily

get the following important properties of the vector elements TPi:

1. V.@i = O, i.e., the vector basis functions are divergence free.

2. If ?i is the vector from node i to j, then *i ● ~~ (ki) = bik.

& The tangenthd components ?i ● @k me continuous across element bounties while

the normal components ?: ● @k are discontinuous.

Property 1 assures that any linear combination of vector finite elements is divergence
free within every triangle. Of course the field maybe divergent along an edge joining
two triangles, this is consistent with a jump in the normal component of the field across
a material interface. Property 2 assures the vector finite elements are linearly indepen-
dent.

Taking the scalar product of both sides of Eq. (6) with one of the basis functions *j and

integrating over the domain Q we get

n“

(8)
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where the second equality follows from Green’s second vector theorem with h x ~ = O

on the domain boundary.

We now assume

2=b’”

i

(9)

to be a member of W = span [wi] , where N is the number of internal edges in the

grid. Then on substituting Eq. (9) into Eq. (8) we get a square system of equations

~(J&@ioqa)$=‘~([~vxwigvxmj~).j

(lo)
ifj i

This leads to a system of ordinary differential equations

(11)

where e is the N-dimensional vector of Galerkin coefficients. Here,

. A is symmetric and positive definite (since &2 1);

● C is symmetric and negative semidefinite.

In practice it is not necessary to calculate the magnetic field, however we introduce a
definition of magnetic field in order to prove stability and conservation of energy. If the
magnetic flux density is defined as

(1, inside triangle i
B = ~biTi Ti =

O, otherwise
i

and then applying Eq. (1) and the Galerkin procedure we get

which again leads to a system of ordinary differential equations

#!. Ge
dt

(12)

(13)

(14)

The matrices in E@.(11) and Eq. (14) are extremely sparse, in fact each row has at most
five non-zero entries, since each edge in the grid interacts with at most four other edges.
Matrices with elements of the form
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(15)

3.0

3.1

are referred to as Gram matrices in the mathematics literature, and mass matrices in the

continuum mechanics literature. In our case, the matrices A and F are related to capac-

itance and inductance, respectively.

Time Differencing

~.01) iS intewated in time using 2nd order centi~ differences to yield the leapfrog
scheme which upon rearrangement is

n+l
e [ )= 21+ At2A-l C en–en-~. (16)

E@ (14) is then difference

@+l/2 = & - 1/2+ AtF-~Gen (17)

This can be written in two-step form as

The matrix in Eq. (18) is called the amplification matrix of the difference method
defined by Eq. (16) and Eq. (17).

Stability

The eigenvalues of the amplification matrix are

(18)

(19)

where ~ are the eigenvalues of 21+ At2A-1 C. If At satisfies

At .S2/@%~) , (20)

then because of the fact that the eigenvalues of A-l C are negative we see that the dis-
criminant of 13q.(19) is negative. It follows that under the condition in Eq. (20) we have

Ikl = 1 and the method is nondissipative. A method is dissipative in the sense that if



IA.Ie 1 the fields would decrease (dissipate) with increasing time. Consider the time
evolution of electromagnetic fields in a closed perfectly conducting cavity. In this case
the initial fields simply oscillate in time forever, neither growing nor decreasing in

amplitude. If a dissipative time integration method with IN <1 were used, the fields
would decrease in time, which is very non-physical.

Poynting’s theorem of energy conservation [23 ] states that the time rate of change of
stored electromagnetic energy in a given volume equals the power supplied to the vol-
ume by independent sources, minus the power radiated away from the volume, minus
the power dissipated in the volume by conductivity. In a closed cavity without sources
to supply power or conductivity to dissipate power, the total energy must remain con-
stant. The total energy in an electromagnetic field is defined as

which in our case can also be expressed in terms of the degrees of freedom as

(e)~Ae+ (b)~l%. (22)

However in the TDVFEM the electric and magnetic fields are staggered in time, hence
energy is not conserved in the traditional sense. A straight-forward, but tedious, calcula-
tion shows that the total energy is conserved in a time-average sense, i.e.

(en+ l)~Aen+l + (bn+l’2)~Fb”+1’2+ (en) ~Aen+ (bn-1’2)~Fb”-1’2 (22)

is a constant for all n.

3.2 Dispersion

Let & and p be constant and consider tlee space solutions of Eq. (6) of the form

where co, ~ = [kl, k21= k[cos(l, sine] are independent of h and t, and ~. is inde-

pendent oft. Then Eq. (24) is a solution of Eq. (6) whenever the dispersion relation

(02= c2k2 (25)

holds, where c = 1/( ~s) . The phase velocity is defined as

0)
v =—

k
(26)
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which equals the speed of light c. In many media & and p are not constant, thus the

phase velocity v is not constant. A medium in which the phase velocity of a wave

depends upon k is called dispersive. A narrow pulse propagating in such a medium will

spread out, or disperse, because each Fourier component of the pulse propagates at a
slightly different frequency. A medium in which the phase velocity depends upon the

direction of propagation e is called anisotropic. Some media are both dispersive and

anisotropic. As stated in Section 2.1 we are only interested in problems in which e and

p are constants. However the DTVFEM, like other time domain numerical methods,

exhibits numerical dispmion due to the finite grid and the finite time sampling. Thus
numerical solutions do not obey Eq. (25), but rather a much more complicated grid
dependent dispersion relation,

We now determine a numerical dispersion relation that relates @ to k when imple-
mented on a periodic triangular grid. The grid used for this analysis is obtained by per-

turbing a grid of equilateral triangles with sides of length Ax by an amount 6 in the
horizontal direction, see Figure 1. If we substitute Eq. (24) into Eq. (9), we see that

ei(f) = (I?..*i)e’(k”i’-of) (27)

where ?i is the midpoint of the edge corresponding to ei, see Figure 1.

Clearly,

ef+’-2e~+e~-’ = ye;, yf = 2(cos(coAt) -1) .

Moreover, if ~i is parallel to ?j, then ej (t) = ei (t) e[i ●M where M = *j – *i so that

Eq. (16) allows us to write a homogeneous system of equations for el, .... eb

where

I
el

e2

11 At*~ e3——
PE~2 e4

e5

e6

(28)
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F=

?,, 2,2 ti~~ o &e-Ib ~16e-Ib

& & 623 ( 1 + e-~a) Lzde-la o 0

G=
t31 ?32 ( 1 + e]a) e33 ?34 o 0

0 Z’42e1a ?43 F44 E45 tiMela

t~l e[b O 0 E54 e~~ ?S6 ( 1 + e~a)

~ij~e[b () o &@-la & ( 1 + e-i”) 266

A
and ~ = ~, ? = PC. That is, Eq. (27) will be a solution to the difference equa-

eAx

tionin Eq. (16)if * = [e,, .. .. e6]’ is an eigenvector of the symmetric generalized

eigenvalue problem (G – rIF) /? = O.
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FIGURE 1. Perturbed Grid (a = kAxcost3, b = k& AxsinO)
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Using Mathematical (or any other symbolic math package) it is possible to evaluate the

six roots q of the equation

det(F-qG) = O (29)

as functions of a and b. Although this yields six dispersion relations, only one is con-

sistent in the sense it approaches the relation in Eq. (25) as At and &r approach zero. If

a Taylor series expansion about a)At = ~Ax = O is performed on the consistent disper-
sion relation, then it can be written as

o)2cr(coAt) = c2k2P&(kAx) (30)

where o (coAt) represents the isotropic part of the relation and P~(k~) the ~sotro-

pic part.

4.0 Equilateral Grids

We now show that certain properties of the TDVFEM are significantly changed when
the triangles in a triangular grid are almost equilateral.
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4.1 Dispersion

The dispersion relations for ~ = O corresponding to an equilateral grid are listed in the
appendix where we see that the consistent dispersion relation is

and

a (coAt) = –l+~(coAr) 2-&(mAt)4+ 0((@At)b) (31)

Ps=o(~@ = -l+ K@x)4+o((Mx)6)

K1=~ sincO- &sin49cos29 + --Lin2ecos4(l +
1

11520 768
—cos% .
3840

Note that the relation is second order accurate in time and fourth order accurate in
space.

The numerical dispersion relation was computed for the generai case using various per-
turbations of 6. The general form of the dispersion relation is given byEq.(31) and Eq.
(32). The coefficients for the anisotropic part are listed in Table 1.

pb(kAx) = -l+ K,(kAx)2+ K&Ax)4+O(k Ax)6

K2 = g,c054e + g2sin4f3+ g~c0s2t3sin29

K3 = g4c056e + g5sin6fl + g6sin29c0s49 + g7sin4(3c0s2(3

(32)

TABLE 1. Anisotropic dispersion coefficients vs. 6

6 I/l g2 g3 a t?s grj L71

314 -0.03906 -0.07031 0.16015

1/2 -0.01736 -0.03125 0.09722

1/4 -0.00434 -0.00781 0.02821

1/8 -0.00108 -0.00195 0.00730

1/16 -0.00027 -0.00049 0.00194

(l (In 00 nn -0.00026 -0.00061 -0.00391 0.00130

Clearly, the coefficients ~,g2, and gq in Table 1 dw=e as S goes to ~ro. In fact) a

simple least square curve fit indicates that these coefficients are second order in 8 indi-
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eating that substantial improvement in the computed solution can be gained by condi-
tioning the grid such that the triangular elements are nearly equilateral.

The numerical phase velocity is given by

(33)

Figure 2 shows plots of the numerical anisotropy versus theta, i.e., plots of the numeri-

cal phase velocity when At = O. A value of & = A/5 was used for each plot where

X = 2rc/k is the wavelength. This is generally considered a coarse grid for wave prop

agation experiments. However these plots indicate that the numerical anisotropy is quite
small even for this grid. The phase velocity error for an equilateral grid is 0.33’%.It
should be noted that on a Cartesian grid with the sameAx = A/5, the Yee algorithm has
a phase velocity error of approximately 7.54%. Figure 3 shows the numerical anisotropy
versus theta using a grid spacing of Ax = L110. This time the equilateral grid has a
phase velocity error of 0.0245%.
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FIGURE 2.

FIGURE 3.

Phase velocity for 6 = ~, ~, $0 and Ax = M5.
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The fact that the numerical dispersion relation is 4th order accurate in space for an equi-
lateral grid has been reported by other researchers [24] [ 25 ]. This result suggests that
an equilateral grid should be used for wave propagation experiments where it is desired
to keep the numerical anisotropy low. However many electromagnetic design and anal-
ysis problems involve complicated boundaries; this was the motivation for an unstruc-
tured grid finite element method in the fist place. Thus for real problems it may not be
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4.2

FIGURE 4.

possible to use a grid composed entirely of equilateral triangles. The gord of grid pre-
conditioning is to make a grid that conforms to a piecewise linear boundary and is also
nearly equilateral. The tables and plots above indicate that a nearly equilateral grid
results in a significant improvement in the reduction of numerical anisotropy, thus pro-
viding motivation for the application of grid pre-conditioning.

Diagonal Dominance

The TDVFEM describedinI@(16) requires the solution of a linear system Ax = b at
every time step. Since the matrix is symmetric and positive-definite, the system can be
solved by iterative methods such as fixed point iteration or preconditioned conjugate
gradient. In either case, convergence rates of these methods are greatly improved if the

matrix A is diagonally dominant. In this section we show that the nearer the grid is to

being equilateral, the more diagonally dominant the matrix A becomes.

Triangular Element with Angles cx and ~

j2

j3

Consider edge i of a grid with edge angles u and ~ defined in Figure 4. Row i of matrix

A consists of the values (pi, @i), (F?i,~j~ , (~i, T?j>, (@i, ~jj , ~d (~ir l?j] , where

The dominance of row i is defined by the quantity

(34)
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Figure 3 is a plotof ri verses elementanglesa and~. Thecontours are in 0.1 incre-

ments. Note that the minimum nccura for the pair a = f) = 60° which is an equilateral

grid. The minimum value in thk caae is 0.4.For angles 45< % L3<90 the mahix A is

still very diagonally dominant. There are snme combinations of (c@ such that ri >1.

thus not every grid will yield a diagonally dominant mahix A.

i

FIGURE 5.

5.0 Grid Preconditioning

lle idea of optimizing a grid to impmve the accurscy of a finite element calculation has

been studied in the context of structural analysis [ 26 ]-[ 28 ]. However the optimal grid
for solving Maxwell’s equations with the TDVFEM maybe quite different than the
optimal grid for structural anal ysis. The previous section provided motivation for using
equilateral grids in conjunction with the TDVFEM. There area variety of commercial

and non-prnfit software packages available for scientists and engineers to use to gener-
ate grids. WMe these grids may be ideal for a variety of dMerent applications, they am

not ideal for the TDVFEM in the equilateral sense. Rather than develop a new grid gen-
eration metbnd from scratch, we examine dKferent techniques for altering or “precondi-

tioning” a given grid so as to make it as equilateral as possible while still conforming to
a curved boundfi.
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5.1 Laplaca Smoothing

Consider a grid of N nodes V = ($1,02, 03, . . .. $~ having NI internal nodes, VI, and N~

boundary nodes, V~. Each node Oiis connected to a set of Mi adjacent nodes

Qi~) . The Laplace matrix of the grid is defined as the Ni x Ni matrixCi = {oil, $i2, .... ,

L= [ lij] where

( Mi, i=j
lij =

–l, $je Cin v,

A grid is said to be Laplacian smooth if

fw \
bk = (z J~j~ /M~ k = 1,2, .. ..Ni (35)

j=l

or, equivalently, the coordinates (xl, yi) of the nodes satisfy LJ1 = ~X and Lj[ = $,,

where 1,, j, are the vector of internal coordinates and &, ~Yrepresent combinations

of boundary coordinates. Since the matrix L is consistently ordered, symmetric and
weakly diagonally dominant, it is non-singular. Consequently, given a set of nodes on
the boundary and connectivity pattern, there exists a unique set of nodes that is Laplace
smooth. In this section the boundary nodes and the connectivity pattern is determined
by a given computational grid.

Figure 6 illustrates the effect of Laplace smoothing on several triangular discretizations
of a circle. Grid la consists of a Delaunay triangulation of semi-random points, grid 2a
was generated using a divide and conquer approach [ 31 ], and grid 3a was generated
using a commercial projection approach [ 32 ]]. The grids on the right are Laplace
smoothed versions of the grids on the left. Figure 7 shows histograms of the edge angles
for each of the grids. The vertical axis is the factor of total angles and the horizontal axis
is the angle degree divided by 10. The histograms clearly indicate that Laplace smooth-
ing did in fact make the grids closer to equilateral.
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FIGURE 6. Effect of Laplace smoothing on three dflerent grids.
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FIGURE 7. Edge angle histogram demonstrate the effectiveness of Laplace smoothing.
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5.2 Edge Swapping

Laplace smoothing tends to make all the angles associated with a node equal, see Figure
7. If a given node is connected to only 4 nodes, there must be at least one angle a 290
degrees. Likewise if a given node is comected to 8 other nodes, there must be at least
one angle as 45 degrees. Consequently, an ideal grid for Laplace smoothing contains
internal nodes that are connected to only six other nodes. Since Laplace smoothing does
not change the connectivity of the nodes, edge swapping might be employed to improve
the connectivity before Laplace smoothing is applied.

Edge swapping was proposed in [ 30 ] for the improvement of triangular grids. Consider
the example grid shown in F@re 8. The degree of a node is the number of adjacent
nodes M~. Nodes a and b are of degree 7, while nodes c and d are of degree 5. If the

edge connecting nodes a and b is “swapped” to connect nodes c and d, all nodes a,b,c,d
will be of degree 6.
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FfGURE 8.

5.3

Illustration of edge swapping

The basic algorithm is as follows. The degree of each node is computed, then a swap
index is computed for each internal edge in the grid. The swap index for edge i is

swapi = deg (ai) + deg (bi) - deg (ci) - deg (di) (36)

where dego denotes the degree of the node. If the swap index of the edge is greater than
2 then it is advantageous to swap this edge. The edges with the greatest swap index are
swapped first. The process is repeated until all edges have a swap index of 2 or less. In
some situations it is not possible to achieve a swap index of 2 for every edge and an
alternative stopping criteria is necessary [ 30 ].

Grid Energy Minimization

It is important to note the in some situations neither Laplace smoothing or edge swap-
ping have any effect on the grid. Consider grid 4a in Figure 9 which is a simple triangu-
lation of a Cartesian grid stretched by a factor of three in the x-direction. The internal

nodes are already in the center of their adjacent nodes, thus the equations L*I = ~Xand

L$, = ~Y are already satisfied and the grid is already smooth in the Laplace sense. Also

note that each internal nodes are of degree 6, thus there is no benefit to edge swapping.
Thus a more radical grid preconditioning approach is required for this type of grid.

Consider defining a grid potential energy function

0 = ~~i $i = ~(~)12 (37)

i j “

where N is the number of internal nodes, mi is the number of nodes adjacent to node i,

and rij is the distance between nodes i and j. The parameter c is arbitrary constant.
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This potential energy function is the repulsive part of the Leonard-Jones potential that is
often used in computational molecular dynamics [ 33 ]. This is an extremely steep

potential function; if the force on node i is defined to be ~ = –V$i then node i is essen-

tially pushed away from its nearest neighbor. The exponent of 12 in Eq. (37) is some-
what arbitrary, the idea is for a given node to only feel a force from its immediate
neighbors, and not from nodes two or three connections away. Obviously an exponent
of only 2 or 3 would not suffice in this regard. Consider grid 4a which is at a local mini-
mum of $ since –V$ = O and thus there is no net force on any of the nodes. However it
is not a global minimum, there are other grids which will have a lower potential energy.
Experience indicates that minimum energy grids will be very nearly equilateral. While
the absolute global minimum of Eq. (37) is quite difficult to find, it is possible to perturb
the grid and move to the next local minimum by repeatedly moving each node a small
amount in the direction of the force. It is essential tore-triangulate the grid after the
nodes are moved. Table 2 lists the grid preconditioning algorithm that is used in the
numerical results of the next section,

TABLE 2. Grid pracondtiioning algotithm

perturb initial grid

re-triangulate

compute initial potential energy +

compute initial step size 6

begin loop

compute gradient $ = -V+

compute displacement ~ = S ($/( K*))

movethenodesk=~+~

re-trianguhte

swap edges

compute new $

compute new 6 = P8

end loop

Luplace smooth

This algorithm was used to generate grid 4b from grid 4a in Figure 9. The boundary
nodes were fixed. The parameters used were ~ = 0.9, 0 = ?, 6 = Pi 10, where r is the
initial average distance between adjacent nodes. The algorithm was iterated twenty
times. Laplace smoothing was applied as the final step. The resulting grid is signifi-
cantly better conditioned than the original grid, as is demonstrated via computer exam-
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pies in section 6. This same procedure was used to generate grid 5b from grid 5a. The
initial grid 5a was generated using a divide and conquer approach[31 ]. This grid repre-

sents coaxial cylindrical cylinders, the inner cylinder has a dielectric constant of e = 5

and the outer cylinder has a dielectric constant of E = 1. The nodes on the boundary
between the two media were constrained.
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FIGURE 9. Illustrationof grid pwconditioning via energy minimization for a rectangular cavity

Grid 4a t Gr.d 4b

.T,

FIGURE 10. Illustration of grid pm-conditioning via energy minimization for a cylindrical cavity

6.0 Numerical Examples

In order to validate the above analyses it is necessary to compare TDVFEM solutions to

exact solutions of Maxwell’s equations. Consider a two dimensional 1m x 1/3m rcct.
angulac cavity with perfectly conducting walls. The electric field vector is confined to
the x-y plane and the magnetic field vector is transverse to this plane. T& is often
refemcd to as a TE mcdc. The speed of light is set to unity for convenience. The electric
field inside thk cavity can be decomposed into an infinite number of modes,
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2 = ~exp (-lmnmt)(a“#cosknxsink~y + bn~j sin knxcoskmy)

n, m (38)

O)nm . ~~m, k. =Icn, k.= 3ntn

where 2, j are the unit vectors in the x and y directions, respectively. The coefficients

a “m and b“m depend upon the initial conditions. The TDVFEM can be used to compute

the resonant frequencies of a cavity by starting with a random initial electric field and
evolving this field in time. The amplitude of the electric field along a selected edge of
the grid is stored for every time step. This signal can then be multiplied by a suitable
window function and then Fourier transformed to yield the power spectrum. The peaks
in the power spectrum are the resonant frequencies of the cavity.

Figure 10 shows the computed power spectrum for grids 4a and 4b. The electric field
was updated every 0.017s for 8000 time steps. The time signal for a selected edge was
then multiplied by a Hamming window, and the signal was padded to 16384 prior to the
Fourier transform. As expected the lower frequencies, which correspond to smaller oAt

and kAx, are more accurate than the higher frequencies.
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FIGURE 11. Computed power spaetrum using TDVFEM for a 1 x 1/3 rectangular cavity
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The same time step and the same Fourier transform process were used for both plots.
Note that the computed resonant frequencies for grid 4b are closer to the exact r&onant
frequencies. There are two modes that resonate at 1.5 Hz, the n = 3, m = O mode ~d

the n = O, m . 1 mode. When using grid 4a these two modes oscillate at two different
frequencies, one slightly lower than 1.5 Hz and one slightly higher than 1.5 Hz. This is
due to the numerical anisotropy of grid 4a. When using grid 4b both modes oscillate at
the same frequency. On the interval O<f< 2 the rrns error was 0.01376 for grid 4a and

0.00333 for grid 4b, thus grid 4b yields a result over four times more accurate than that
obtained using grid 4a.
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TABLE 3.

Not only does grid 4b give rise to a more accurate field calculation, it also required less
computer time on an HP-750. The conjugate gradient method was used to solve Eq.(11 )

to within an error of 10-9 at every time step. The calculation on grid 4b required fewer
iterations because the resulting matrix A is better conditioned in the sense that it is more
diagonally-dominant. An even greater reduction in computer time was achieved using
adaptive successive over-relaxation. The relaxation parameter was initially set to 1.0
and it was updated at every time step; it quickly converged to an optimal value of 1.07.

The same error criteria of 10-9 was used for both the conjugate gradient and the succes-
sive over-relaxation methods. The pre-conditioning process required 9.7 seconds on the
I-IP-750, which is about 9% of the total time required to generate the solution.

Computer time required for gride 4a and 4b

Grid CG ASOR Pm-Conditioning

4a 338.2s 210.9s o
4b 232.5s 110.0s 9.7s

As a second example consider the coaxial cylinders illustrated in Figure 10. The inner

cylinder has a radius of b = 0.5m and dielectric constant El = 5.0, the outer has

radius a = 1.Orn and dielectic constant E2 = 1.0. Using cylindrical coordinates the

exact solution can be expressed as an infinite number of modes, each mode consisting of
Bessel functions of the first and second kind. Each mode oscillates at a resonant fre-
quency. The resonant frequencies are solutions of a complicated transcendental equation
that can be solved using a standard root-finding algorithm. The exact solution is a linear
combination of modes

EP (n, m) =

E$(n, m) =

(39)

> (Anmyn(p~nm~&) + BnmYn(pO.)nm~&)) e-in$ ‘

where EP and E$ denote the cylindrical components of each mode, Jn and Yn repre-

sent Bessel functions of order n of the first and second kind, and the prime denotes dif-

ferentiation. The constants A~~ and B~~ are given by

B JijJ.(b%nJ El) Jn (b~nm+j –Jn (b@nm&2)Jn (b@n.&)
nm

(40)

= Jn (bcon~&2) Yn (bton#j - J’n(bcon@ Yn(bcon.~q) ‘

(41)
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TABLE 4.

The resonant frequency con. is the rnthroot of

A#’n (a@~2) + Bn.Yn (a(o&2) = O. (42)

The resonant frequencies for the coaxial cylindrical cylinder were computed using the
TDVFEM in the same manner as in the rectangulm cavity example. A random initial
electric field was generated, the field was updated every 0.017s for 8000 time steps.
The time signal for a selected edge was then multiplied by a Hamming window, and the
signal was padded to 16384 prior to the Fourier transform. The resulting power spectra
are shown in Figure 12. Therms error between the computed resonant frequencies and
the exact resonant frequencies on the interval O<f< 1 was 0.011544 for grid 5a and
0.001259 for grid 5b, thus grid 5b yields a result over nine times more accurate than that
obtained using grid 5a. In this example both grids 5a and 5b required comparable com-
puter time. The time required to pre-condition the grid was 67 seconds, which is about
6% of the total time required to generate the solution.

Computer time required for grids 5a and 5b

Grid CG ASOR Pre-Conditioning

5a 5488s 1120s o

5b 4082s 1113s 67s
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FIGURE 12. Computed power speetra for coaxial cylindrical cylinder
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7.0 Conclusion

Electromagnetic field calculations using the TDVFEM can be improved by various grid
pre-conditioning techniques. It was established that an equilateral grid was ideal, but
there are advantages towards achieving a nearly equilateral grid. The numerical anisot-
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ropy inherent in the TDVFEM is reduced as the grid becomes more equilateral. This
was established by an analytical dispmion anrdysis and verified via two computational
experiments. The matrix A, which is similar to the mass matrix in continuum mechan-
ics, becomes very well conditioned as the grid becomes more equilateral. This reduces
the computational effort required to update the field. Laplace smoothing consists of
moving each internal node to the average of the adjacent nodes; this tends to produce a
better conditioned grid in the sense that triangles become more equilateral. Edge swap-
ping can be employed to improve the connectivity of a grid prior to performing Laplace
smoothing. In some circumstances a given grid maybe smooth in the Laplace sense, but
still be rather poorly conditioned. We introduced a new grid pre-conditioning method
based on energy minimization principles. This method iteratively moves internal nodes
according to an empirical force law and re-triangulates the grid. Laplace smoothing is
then applied as the final step. The resulting grid is much better conditioned than the
original.
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Appendix

The diagonal terms of ~ are equal to 10/ (12X) , the non-zero offdiagonal terms are

all equal to -1/( 12X) . Every non-zero element of ~ is equal to 4/( Y) . The six
solutions to Eq. (29) are

1.

Y=o

2.

Y=o

3.

[JY v&~ =_Q8+fb2+~b4+ 19 6

3 36
~ob +O(b7) +

(

~_lb2+ 5 4

8
~b - &ob6 + O (b7) )a2 +

(

1
~b2-—

‘~+96 4::72b4+ 14$%320
bb+O(b7))a4+

( h-aOb2+Ab4-53i:::200
bb+O(b7))ab+O(a7)

4.

[JY p&~:
=_24_9b*+ 33 4 1313 6

i
~b - mob + O (b7) +

(
:–$b2+~6b4-~ bb +O(b7))a2+

( 11:8 %b2+-b4-3%$Ob’+ 0(b7))a4+
———

(

113—— ~b2 + ~fl:80b4 - 101117597 6
20480 163840

75497472wb + O (b’) )ab + O (a’)

5.

N 48 +~b2–~b4+Eb’+O(b7) +Y v&:; =-y 25

(
36+ 63b2_ 2319 4 42407 6

– ~ 250 -b + 800000
—b + O (b7) )a2 +

( A+%$b2- 17=b4+f::Eb’+0(b7) )a4+
——

(
7 9287 b2

— ‘tiAb4 +92160000020000 + 8m
12343327 bb + O (b7) )a’ + O (a7)
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[)
2

Y p&~ = - :b2 + &WbG + O (b7) +

(
~b2 + —

82:44b4-663:520
bG+O(b7))a4+

(
~b2-

-1 ‘6912
AbG + O (b7) )a2 +

( ~+Ab2+ l~560b4+42:::6960
bG+ O (b7) )ac + O (a7)

Of the six solutions only the last equation makes sense physically.
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